Detection and estimation of abrupt changes contaminated by multiplicative Gaussian noise

نویسنده

  • Jean-Yves Tourneret
چکیده

The problem of abrupt change detection has received much attention in the literature. The Neyman—Pearson detector can be derived and yields the well-known CUSUM algorithm, when the abrupt change is contaminated by an additive noise. However, a multiplicative noise has been observed in many signal processing applications. These applications include radar, sonar, communication and image processing. This paper addresses the problem of abrupt change detection in presence of multiplicative noise. The optimal Neyman—Pearson detector is studied when the abrupt change and noise parameters are known. The parameters are unknown in most practical applications and have to be estimated. The maximum likelihood estimator is then derived for these parameters. The Neyman—Pearson detector combined with the maximum likelihood estimator yields the generalized likelihood ratio detector.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-scale analysis of abrupt changes corrupted by multiplicative noise

Multiplicative Abrupt Changes (ACs) have been considered in many applications. These applications include image processing (speckle) and random communication models (fading). Previous authors have shown that the Continuous Wavelet Transform (CWT) has good detection properties for ACs in additive noise. This work applies the CWT to AC detection in multiplicative noise. CWT translation invariance...

متن کامل

Adaptive Signal Detection in Auto-Regressive Interference with Gaussian Spectrum

A detector for the case of a radar target with known Doppler and unknown complex amplitude in complex Gaussian noise with unknown parameters has been derived. The detector assumes that the noise is an Auto-Regressive (AR) process with Gaussian autocorrelation function which is a suitable model for ground clutter in most scenarios involving airborne radars. The detector estimates the unknown...

متن کامل

Speech Enhancement Using Gaussian Mixture Models, Explicit Bayesian Estimation and Wiener Filtering

Gaussian Mixture Models (GMMs) of power spectral densities of speech and noise are used with explicit Bayesian estimations in Wiener filtering of noisy speech. No assumption is made on the nature or stationarity of the noise. No voice activity detection (VAD) or any other means is employed to estimate the input SNR. The GMM mean vectors are used to form sets of over-determined system of equatio...

متن کامل

Numerical solution of second-order stochastic differential equations with Gaussian random parameters

In this paper, we present the numerical solution of ordinary differential equations (or SDEs), from each order especially second-order with time-varying and Gaussian random coefficients. We indicate a complete analysis for second-order equations in special case of scalar linear second-order equations (damped harmonic oscillators with additive or multiplicative noises). Making stochastic differe...

متن کامل

Salt and Pepper Noise Removal using Pixon-based Segmentation and Adaptive Median Filter

Removing salt and pepper noise is an active research area in image processing. In this paper, a two-phase method is proposed for removing salt and pepper noise while preserving edges and fine details. In the first phase, noise candidate pixels are detected which are likely to be contaminated by noise. In the second phase, only noise candidate pixels are restored using adaptive median filter. In...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Signal Processing

دوره 68  شماره 

صفحات  -

تاریخ انتشار 1998